Advanced Fuel Cycle Initiative Semi-Annual Technical Review

- Lead-Alloys Coolant Technology

Ning Li August 26-28, 2003 Los Alamos National Laboratory

Outline

- Integration with Gen IV LFR/SSTAR
- Work Packages Milestone Performance and Outlook
- Technical Achievements Highlight
- University Collaboration and International Cooperation
- Conclusion

Contributions from Many Team Members and Collaborators

- Valentina Tcharnotskaia, Mike Madrid, Keith Woloshun DELTA Loop
- Wei Hang Oxygen sensors
- Scott Lillard, Mike Paciotti Characterization of oxides
- Jinsuo Zhang Corrosion modeling
- Jim Lime, Jinsuo Zhang TRAC modeling of DELTA
- Stuart Maloy, Peter Hosemann Preparation and analysis of test specimens
- Gary Was, GRAs/PD, U. Michigan Heavy ion irradiation to simulate spallation environment
- Jim Stubbins, Alan Bolind, U. III, U-C Corrosion probe
- Darryl Butt, GRAs, U. Florida Irradiation effects on oxides
- Frank Harmon, staff, IAC E-beam irradiation of oxygen sensors
- Ron Ballinger, GRA, MIT Fe-Si/Fe-Cr-Si alloys, ODS materials for enhanced corrosion resistance
- Todd Allen, ANL Test (fusion) materials
- John Farley, Allen Johnson, Ajit Roy, Samir Moujaes, Yitung Chen, Yingtao Jiang, Bingmei Fu, Woosoon Yim, Tony Hechanova, Gary Cerefice, and students, UNLV corrosion analysis, mechanical/corrosion properties, corrosion and hydrodynamics, sensors, LBE test loop and facility, etc

Integration with Gen-IV LFR Coolant Technology R&D

- Transitioned a fraction of the SOW in DELTA Loop Operation and LBE Research work packages into Gen IV LFR/SSTAR program from the third quarter of FY03
- Joined the development of LFR/SSTAR project;
 planning and leading coolant technology development

Milestone Performance in 2nd-3rd Quarters, FY03 DELTA Loop Operation and Experiments

Milestones	M/S Level	Baseline	Status/Outlook
Loop conditioning and attended operation to test long term operation stability	4	4/4/03	Completed (Include oxygen sensor seal development and testing)
Initiate DELTA loop 1000 hr materials test	4	7/15/03	Just started (Loop and LBE contaminated with excess oxides and oxygen during shakedown operations; action plan proposed for change of SOW and schedule to include cleanup and restoration test and development before testing)
Complete DELTA Loop 1000 hr materials test	3	9/15/03	Delayed (see above)
Thermal hydraulic test preliminary design	4	8/15/03	Completed
Thermal hydraulic test final design	4	9/29/03	Will complete on schedule

Milestone Performance in 2nd-3rd Quarters, FY03 LBE Research

Milestones	M/S Level	Baseline	Status/Outlook
Analysis report for irradiation experiment on oxide of HT-9	4	1/03	Completed
Summary of preconditioning oxidation parameters investigated	4	4/03	Completed
Delivery of oxygen sensors to international partners	4	7/03	Delayed (CEA proposed delay till 12/03)
Initial analysis of the corrosion test specimens (including effects of Si)	4	8/03	Partial completion – analysis on control specimens performed, new specimens prepared
Deliver available LBE data and operational experience to LBE handbook	4	8/03	To be completed (compiling Russian and international materials database)
Corrosion probe seals tested in LBE flow	4	9/03	Will complete on schedule
Complete TRAC model for LBE benchmark	4	9/03	Completed

Technical Achievement Highlights

- Improvement of instrumentation for DELTA Loop application
- Development and testing of loop and coolant restoration methods to remove excess oxides and oxygen
- Characterization of pre-oxidation of HT-9 and 316SS
- Application and publication of corrosion modeling results (5 journal articles)
- Design of new sensor assembly and a calibration stand
- Selection of thermal hydraulic test conditions in DELTA Loop (natural convection) through TRAC
- Expansion of test specimens (materials and configurations)
- Compilation of Russian materials database for lead-alloys cooled nuclear systems and international LBE corrosion test results

Developing and Improving Sensors and Instrumentation for DELTA Loop

- Reliable pressure transducers have worked consistently for over 200 hours and 20 cycles
- Venturi flow meter reads consistent lead-bismuth flow rates
- New oxygen sensor design provides superior sealing.

Material Test Specimens are Ready

 Material Samples of Stainless steels 316L, HT9, T91, EP823, 316L welded to T91 and Tantalum, Iron, Iron-Silicon alloys, Alumina are ready for testing.

Welded 316L /T91 corrosion samples

Alumina corrosion samples

HT9 tensile samples

Developing and Testing Loop and Coolant Restoration Methods in DELTA Loop

The oxygen concentration increased from 8.7e-6 wt% (T_{sat}~270°C, 08/02) to 5.5e-5 wt%(T_{sat}~350°C, 03/03)

Measured OS Signals in DELTA Loop, 3/11/2003

Epic Battle with Oxygen in DELTA Loop

- Manual oxide removal
- Over 50 hours of 6%H₂/94%He injection into flow
- Over 200 hours of cleaning gas injection into melt tank

Oxygen Sensors Show Loop Oxygen Contamination

Example of Oxygen Sensors Readings

Using Dielectric Properties of Oxide to Measure Corrosion Online/In-situ

Electrical equivalent circuit for LBE system

Theoretical Bode magnitude and phase data

An applied ac voltage (10 mV) across the oxide interface via a potentiostat & FRA

Experimental Characterization of Pre-oxidized HT-9 in LBE

Influence of immersion time in LBE*

oxidation rate calculated from oxide impedance (conductivity) and Wagner's oxidation theory

Pre-oxidation	Pre-oxidation	LBE	Post LBE	R_{ox}	Oxidation
Time	Thickness	Immersion	Immersion		Rate
		Time	Thickness		
(hrs.)	(µm)	(hrs.)	(µm)	$(\Omega \cdot cm2)$	μm/hr.
36	15	24	24	817	0.97
48	13	24	24	881	0.89
64	29	183	45	1434	0.55

Influence of Proton Irradiation on Corrosion Rate During Immersion in LBE - Pre-oxidized HT-9

Modeling Corrosion in Oxygen Controlled LBE

 Developed an explicit correlation of corrosion rate dependence on loop conditions (averaged in the highest temperature leg)

$$Sh_{av} = 0.53 Re^{0.6} Sc^{1/3} (d/L)^{1/3} (\Delta T/T_{max})^{1/3}$$

Application of Corrosion Model to JLBL-1 (JAERI Lead-Bismuth Loop) Experiment

Calculated corrosion/precipitation rate for iron (solid line) and the temperature profile (dashed line) for JLBL-1 loop.

Deposition zone (thick back line) JLBL-1 experiment. The corrosion rate is between 0.03-0.1 mm at the highest temperature leg.

Design and Fabrication of New Oxygen Sensor Assembly and Calibration Stand

- New oxygen sensor configuration to improve assembly and removal
- New calibration stand for multiple sensor testing and higher temperatures

QuickTime™ and a Photo - JPEG decompresso

Using TRAC Model of DELTA Loop to Set Pre-test Conditions of Natural Convection Experiment

	Calculated Parameter	500°C/400°CeTacst	Expansion Tank Natural Convectiessure Boundary 95
	(120)	Case (110)5	Flow Test Cose
FILL BREAK OSO BREAK	Heater section power	54.76 kW _{ube Side}	54 76 LW
240 (250) BREAK 240 (250) 250 220	Pump total mass flow	16.2 kg/s	N/4950 190 90
240 250 220 1	30 195	(25.1 gp 3 h)ell Side	190 90
/ater Coolant	Test section mass flow	11 26 kg/s 50 6	2.63 kg/s (3)
230 964 962 960	130 130	(17,65 gpm) 6	0 (4.13 gpm) (3)
	47 est section flow velocity	2 m/s	
	46 est section now velocity	(2)	0.468 m/s Recuperator Bypass Line
	S. 180	670.4 K (397.2°C) ⁵	N/A
	Sump tank temperature (1) (180) Pump Bypass Line 4Recyperator-shell-side inlet temperature 4		N/A
1	(140)	668.4 K (395.2°C)	
	Recuperator shell-side outlet temperature Recuperator shell-side resquiq Boundary	741.7 K (468.5°C)	N/A Test Section
	170	73.3°C	N/A Test Section
	160 Pump (incide		60
(145)	Heater section in the temperatural line ide sump tank) 30	740.1 K (467.0°C)	664.9 K (391.8°C)
143	Heater section outlet temperature	773.5 K (500.4°C)	808.1 K (535.0°C)
	Heater section 2 T (T _{out} - T _{in}) 30	33.4°C	143.2°C
	10	0	
	Recuperator tube-side in let temperature	77150 K (498.0°C)	797.4 K (524.3°C)
	Recuperator tube-side outlet temperature	697.0 K (423.8°C)	793.2 K (520.0℃)ter
		s Line -74.1°C	-4.3°C 70
	(156) [(152)		70 80
	Heat exchanger fource Inflowrature Source Outflow	696.6 K (423.4°C)	791 1 K (518 0°C)
Valve positions:	Heat exchanger outlet temperature	673.0 K (399.9°C)	672.0 K (498.8°C)
	nrriosed for natural convection qperation tion, open for natural convection operation	-23.6°C	-119.1°C
(3) normally closed for both	n bleati enchangeir doewe crean opelarate but	37.48 kW	44.23 kW
can be opened to bypas	s recuperator for natural convection operation		^
	Piping external heat losses	17.28 kW	10.53 kW
			• Los Alam

Expansion of Test Materials and Configurations

- Fe-Cr-Si alloys Cr, Si alloying effects on LBE corrosion resistance (assisting formation of protective oxides)
- Fusion alloys
- C-rings and U-bends

University Collaborations

- U. Michigan completed 3 MeV proton irradiation of HT-9 and T91 up to 10 dpa (study microstructure changes to simulate radiation damages in spallation environment)
- U. Illinois, U-C nearly completed assembly of an LBE loop with EIS instrumentation to study feasibility of corrosion probes
- IAC designing e-beam irradiation of oxygen sensors to study radhardiness
- MIT Fe-Si, Fe-Cr-Si alloys, ODS, for enhanced corrosion resistance
- U. Florida planning irradiation of oxides to study corrosion resistance under radiation
- UNLV -
 - Delivered C-rings and U-bends SCC and liquid metal embrittlement
 - Comparing in-LBE and in-air oxidation, and studying effects of initial surface conditions
 - Modeling corrosion coupled with hydrodynamics geometry effects
 - Setting up a test apparatus to investigate alternative use of oxygen sensors

International Cooperation

- Contributing to DOE/CEA collaborations (Work Package 3)
- Completed FZK Oxygen Control System(OCS) reception, installation and testing
- Participating in OECD/NEA LBE Expert Group: determined the scope, schedule and assignments for LBE materials handbook; and leading preparation of an international joint development plan
- Setting up ISTC 2083p agreement with IPPE to support the UNLV LBE test loop operations
- Using corrosion model to interpret JAERI test results

FZK Oxygen Control System Received and Tested

- Delivered in 5/03: successfully installed, tested and demonstrated
- Will be used for sensor calibration, and control for materials test stand

Conclusions

- The LBE technology development thrust is integrated with Gen IV LFR/SSTAR materials development program; joint planning benefits both programs
- Difficulties in cleaning the DELTA Loop of the excess oxides and oxygen are delaying the corrosion test, and moved a later development task - coolant cleaning and loop restoration forward
- We made significant advances in several areas of coolant technology and materials development
- We continue extensive university and international collaborations

